首页> 外文OA文献 >Non-ignorable loss to follow-up: correcting mortality estimates based on additional outcome ascertainment
【2h】

Non-ignorable loss to follow-up: correcting mortality estimates based on additional outcome ascertainment

机译:不可忽视的随访损失:基于额外的结果确定来校正死亡率估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Loss to follow-up (LTFU) is a common problem in many epidemiological studies. In antiretroviral treatment (ART) programs for patients with human immunodeficiency virus (HIV), mortality estimates can be biased if the LTFU mechanism is non-ignorable, that is, mortality differs between lost and retained patients. In this setting, routine procedures for handling missing data may lead to biased estimates. To appropriately deal with non-ignorable LTFU, explicit modeling of the missing data mechanism is needed. This can be based on additional outcome ascertainment for a sample of patients LTFU, for example, through linkage to national registries or through survey-based methods. In this paper, we demonstrate how this additional information can be used to construct estimators based on inverse probability weights (IPW) or multiple imputation. We use simulations to contrast the performance of the proposed estimators with methods widely used in HIV cohort research for dealing with missing data. The practical implications of our approach are illustrated using South African ART data, which are partially linkable to South African national vital registration data. Our results demonstrate that while IPWs and proper imputation procedures can be easily constructed from additional outcome ascertainment to obtain valid overall estimates, neglecting non-ignorable LTFU can result in substantial bias. We believe the proposed estimators are readily applicable to a growing number of studies where LTFU is appreciable, but additional outcome data are available through linkage or surveys of patients LTFU. Copyright © 2013 John Wiley & Sons, Ltd.
机译:失访(LTFU)是许多流行病学研究中的普遍问题。在针对人类免疫缺陷病毒(HIV)患者的抗逆转录病毒治疗(ART)程序中,如果LTFU机制不可忽略,则死亡率估计可能会有偏差,也就是说,失去和保留的患者死亡率不同。在这种情况下,处理丢失数据的常规程序可能会导致估计偏差。为了适当地处理不可忽略的LTFU,需要对丢失的数据机制进行显式建模。这可以基于对患者LTFU样本的额外结果确定,例如,通过与国家注册机构的链接或通过基于调查的方法。在本文中,我们演示了如何使用这些附加信息来基于逆概率权重(IPW)或多重插补构造估计量。我们使用模拟来对比拟议估计量的性能与HIV队列研究中广泛使用的方法来处理缺失数据。我们使用南非ART数据说明了我们方法的实际含义,这些数据可部分链接到南非国家生命登记数据。我们的结果表明,虽然可以通过额外的结果确定来轻松构建IPW和适当的估算程序,以获得有效的总体估算,但是忽略不可忽略的LTFU可能会导致重大偏差。我们认为,拟议的估计量很容易适用于越来越多的需要LTFU的研究,但是可以通过对LTFU进行链接或调查来获得更多的结局数据。版权所有©2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号